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A B S T R A C T

Proteomic genotyping detects single amino acid polymorphisms to infer the genotype of corresponding non-
synonymous SNPs. Like any DNA genotype, these inferences can be used to estimate random match probability.
Fingermarks are a common source of biological evidence that is sample limited and a highly variable source of
identifying DNA. Genetically variant peptides from fingermarks, that contain single amino acid polymorphisms,
are an additional source of identifying genetic information. To discover these peptide biomarkers epidermal
corneocytes from 9 subjects were isolated, processed, digested with trypsin and applied to mass spectrometry.
The resulting proteomic and matching exome datasets were used to discover, characterize and validate 60 ge-
netically variant peptides. An average of 28.8 ± 4.4 genetically variant peptides were detected from each
subject resulting in a total of 264 SNP allele inferences with 260 true and 4 false positives, a false discovery rate
of 1.5%. Random match probabilities were estimated using the genotype frequencies from the matching major
populations in the 1000 Genomes Project. Estimates ranged up to a value of 1 in 1.7× 108, with a median
probability of 1 in 2.4× 106. Furthermore, the proteomically-inferred genotypes are likely to be compatible
with the STR-based random match probability estimates since the closest STR locus was 2.2 Mb from the nearest
GVP-inferred SNP. This project represents a novel mode of genetic information that can be obtained from fin-
germarks and has the potential to complement other methods of human identification including analysis of ridge
patterns or touch DNA.

1. Introduction

Fingermarks are a source of identifying information that can pro-
vide a unique link between an individual and probative items or loca-
tion [1–8]. Fingermarks are created when material is transferred from
skin to a solid surface. While the physical amount of material is highly
sample limited, the transfer often contains forensically useful in-
formation, either in the form of a two-dimensional friction ridge pat-
tern, or informative molecules such as small compounds or genetic
material [1,4,8–11]. The transfer is highly variable. The amount of
material transferred is dependent on a donor’s biology, such as their
shedder status and level of sweat production, or behavior, such as the
frequency and duration of transferring DNA- and protein-rich cells from

other body regions or tissues, and the amount of time since the donor
last removed biological material from the skin surface [8,10,11]. Con-
textual factors such as contact time, pressure, shear forces, and the
physical nature of the receiving surface also affect the level and pattern
of material deposition [8,10]. Fingermarks have a high surface area and
are more likely to be degraded [12]. In this framework of sample lim-
itation, variability, and degradation, the development of additional
sources of genetic information may significantly enhance the reliability
and scope of identifying fingermark information.

Recently protein has been demonstrated to be a carrier of genetic
information in the form of single amino acid polymorphisms (SAPs), the
result of non-synonymous SNPs [13]. Detection of these SAPs in ge-
netically variant peptides (GVPs) allows for the inference of
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corresponding SNP alleles in the donating individual. These are typi-
cally common DNA variants, well documented in extant genetic data-
bases and present in every population. In aggregate a profile of pro-
teomically-inferred SNP alleles can be used, just like any SNP or STR-
based genotype, to estimate random match probabilities (RMPs)
[13–15]. This approach has been demonstrated in hair shafts and more
recently in bone protein [13,16]. Protein is a major component of fin-
germarks [1,8,12,17–22]. Therefore, it is a potential source of genetic
information that can be used to infer SNP genotype [13]. Because
protein is chemically more stable than DNA, it is possible that pro-
teomic genotyping may be a major source of SNP genotype information
in degraded samples [23–25]. Since the inferred SNPs are autosomal
they can potentially be incorporated into SNP or STR-based RMPs.

This project sought to discover, characterize and validate geneti-
cally variant peptides that could be expected to occur in the fingermark
proteome, specifically the proteins in epidermal corneocytes [26–28].
Once this was achieved we then sought to place these data into a
broader context. This included estimation of RMPs and development of
likelihood values for different population sources, the incorporation of
rare GVPs, and the potential of a single RMP estimate using both GVP-
inferred SNP alleles and STR genotypes. The validated peptide bio-
markers that were identified, characterized and validated in this study
provide a starting point for additional studies that extract genetic in-
formation from the protein fraction of fingermarks.

2. Methods

2.1. Sample procurement

The study was approved by the Institutional Review Board of the
University of California, Davis (IRB#217868-14) and Quaid-i-Azam
University, Islamabad (IRB #216) prior to the study and informed
consent was obtained from all participating individuals. Venous blood
and mouthwash buccal cells (for genomic DNA) as well as epidermal
samples (for proteomic analysis) were collected using IRB compliant
protocols from nine unrelated adult (> 18 years old) individuals of
European (n=5) and South Asian (n= 4) origin (Table S1). Samples
were collected as described previously [29]. Briefly, epidermal samples
were collected using D110-D-squam stripping tapes (CuDerm, Dallas,
USA) that were applied onto the skin area and pressed with a gloved
thumb. The tapes were removed with the help of forceps and placed in a
clean 15mL polypropylene centrifuge tube such that the adhesive sides
were facing inward and were not over-lapping. Each of the enrolled
subjects was sampled at up to three different anatomic sites as de-
scribed (Table S1). Five tapes were collected from each site. Samples
that were used to study dithioerythritol-soluble (AS) and insoluble (AP)
proteins were taken from the forearm (A, Table S1, Method 2). Subjects
UCD006-008 were ichthyosis patients [30].

2.2. Sample processing

As described previously epidermal corneocytes were eluted from
tape circles by soaking them overnight in 2% sodium dodecyl sulfate –
0.1M sodium phosphate solution (SDS-NaHPO4) (pH 7.8) [29,30]. The
cell bodies settled at the bottom of the tubes, transferred to clean mi-
crofuge tubes by the help of Pasteur pipettes and were washed twice
with 2% sodium dodecanoate (SD) – 0.05M NH4HCO3 (SD - ABC), each
wash being followed by centrifugation and discarding of the super-
natants. The pellets were resuspended in 0.4mL of the SD – ABC so-
lution followed by the addition of 20 μL of 1M dithioerythritol to make
50mM and stirred at room temperature for 20min. To enhance the
reduction, the samples were incubated at 95 °C for 10min. and then
transferred to an incubator preset at 37 °C for one hour. Afterwards,
iodoacetamide (to a concentration of 100mM) was added and the
samples were gently stirred for 45min in the dark. The pH was adjusted
to about 3 with trifluoroacetic acid and SD was extracted in the

supernatants after the addition of 700 μL ethyl acetate, mixing, fol-
lowed by centrifugation (16,100 g x 3min) and removal of the upper
organic phase. The pH was adjusted to about 8 with 2.5 μL of con-
centrated ammonium hydroxide and 20 μL of 1M NH4HCO3. Re-
ductively methylated trypsin was added for protein digestion [31]. For
samples from UCD001 – 003, 87 μg of trypsin was added to the samples
and incubated on a magnetic stirrer at room temperature for 6 h, at 3 h
another addition of trypsin (87 μg) was added. For samples UCD004 –
009 and UCD002 – 003 AS and AP fractions, 25 μg of trypsin was added
and the sample incubated for 3 days at room temperature with further
25 μg aliquots of trypsin added each day. The samples were then cen-
trifuged and the supernatants, containing the digested peptides, were
transferred to Lo-Bind microfuge tubes and kept frozen until analysis
[30]. A subset of arm skin samples were collected and processed in
50mM dithioerythritol as described above; however at the end of the
reduction step the tubes were centrifuged, and the supernatant col-
lected. The pellets were re-suspended and recentrifuged in 50mM di-
thioerythritol in SDS-NaHPO4 and the process repeated 4 times with the
first two supernatants being pooled to comprise a supernatant (AS), or
DTE-soluble fraction [32]. The final pellet (AP), or DTE-insoluble frac-
tion, was resuspended using SDS-NaHPO4 and both fractions processed
identically to other samples by alkylation and subsequent treatments
[32]. All resulting peptide samples were assayed for peptide con-
centration using a fluorescent peptide assay (Pierce, Thermo Fisher
Scientific Inc.).

2.3. Mass spectrometry

A Thermo Fisher Scientific Q Exactive Plus Orbitrap mass spectro-
meter with inbuilt Proxeon nanospray and Proxeon Easy-nLC II HPLC
was used for the mass spectrometric analysis. The digested samples
(750 ng) were loaded on a 100 μm × 25mm Magic C18 100 Å 5 U
reverse phase trap, desalted online and separated over 120-min gra-
dient of 5 to 80% acetonitrile in 0.05% formic acid via 75 μm ×
150mmMagic C18 200 Å 3 U reverse phase column at 300 nL/min flow
rate. MS survey was conducted at the m/z range of 350–1600, and the
15 most abundant ions from the spectra were selected and subjected to
higher-energy C-trap dissociation to fragment the precursor peptides
and obtain MS/MS spectra [33]. Precursor ions selected in a 1.6m/z
isolation mass window and fragmented via 27% normalized collision
energy. A 15 s duration was used for dynamic exclusion.

2.4. Proteomics analysis using peptide spectra matching software

Raw data files (.RAW) were converted to MzML format using the
MSConvertGUI (Proteowizard 2.1, http://proteowizard.sourceforge.
net) and applied to the desktop X!Tandem peptide spectra matching
algorithm (Global Proteome Machine Fury, X!Tandem Alanine
(2016.10.15.2)). Default search parameters were used except that no
prokaryote and virus reference libraries were used and the point mu-
tation function was activated. Peptide and protein log(e) scores were set
to -1, and fragment mass errors of 20 ppm, and parent mass error of
100 ppm were used. The mass spectrometry proteomic datasets have
been deposited to the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD012628 and MassIVE
proteomics data repository at the UCSD Center of Computational Mass
Spectrometry (MSV00008342) [34].

2.5. Label free quantitation and analysis of protein expression levels

To quantify the proteins from the LC–MS/MS datasets, a label-free
quantification analysis was performed using PEAKS™ Studio 10.0
(Bioinformatics Solutions Inc., Waterloo, ON, Canada) [35]. A single
representative proteome dataset from non-ichthyosis subjects (1 to 5, 9)
from 3 skin body locations (P= palmar, A= arm, FH= forehead) for a
total of 13 datasets was processed using a PEAKS™ validated UNIPROT
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human reference proteome (UP000005640, www.uniprot.org/). De-
fault settings were used with the exception of a 15 ppm mass error
range for the precursor mass and 0.04 Da (Da) for fragmentation
masses. A fixed amino acid carbamidomethylation (+57 Da) was as-
sumed for cysteines and variable modifications assumed for methio-
nines (oxidation, +15.99 Da; dioxidation, +29.99 Da), glutamines and
asparagines (deamidation, +0.98 Da), tryptophan and histidine (oxi-
dation, +15.99 Da) and N-terminal (pyroglutamation, -17.03 and
-18.01 Da; formylation, +27.99). The resulting datasets were filtered
with a 1% peptide false discovery rate and analyzed in the Q-Module to
generate a heat map by label free quantitation using default settings.

2.6. Genetically variant peptide discovery and analysis

The peptides identified in the Global Proteome Machine to carry
single amino acid variants (SAV) were selected based on the following
inclusion criteria: a matching (log(e)) score of< -2, a matching dbSNP
accession number with a minor allelic frequency greater than 0.5% in
the 1000 Genomes Project (ensembl.org) [36,37]. Exclusion criteria
included: the presence of unexpected chemical or genetic modifications
(i.e., other than methionine oxidation, deamidation, N-terminal acet-
ylation, and cysteine carboxymethylation), the presence of fragmenta-
tion masses consistent with the alternative reference allele and non-
specific cleavage of the peptide backbone. Polymorphisms that resulted
in the same masses (such as I to L, or Q to K) or in mass shifts that were
identical to common modifications such as deamidation (N/Q to D/E),
or oxidation (M to F) were also excluded. To prevent the inclusion of
peptide with more than one genomic address, all peptide sequences
were submitted to PROWL (prowl.rockefeller.edu/prowl/proteininfo)
and searched against the IPI human (2010-02-01) database. Peptides
with no match or represented by a single point in a gene were con-
sidered unique and included in the study. Peptides identified in this
manner that met all proteomic criteria were defined as candidate GVPs
and peptides that are demonstrated to accurately infer DNA genotype
were defined as validated GVPs in this study.

An alternative discovery process was also incorporated into this
study. Exome genotypes of South Asian subjects were examined for the
presence of non-synonymous SNPs in gene products that were detected
in the epidermal corneocyte proteome. Proteomic data were then
analyzed to confirm if there were GVPs that corresponded to either
allele of the SNP locus. No filtering for genotype frequency was applied
in this approach. Peptides confirmed in this manner were defined as
confirmed GVPs in this study.

2.7. Exome sequencing and bioinformatic analysis

Two exome sequencing and analysis protocols were used in this
study. Samples UCD001 to UCD005 were processed at the DNA
Technologies Core Facility at University of California - Davis. Barcode-
indexed sequencing libraries were generated from genomic DNA sam-
ples (1000 ng) sheared on an E220 Focused Ultrasonicator (Covaris,
Woburn, MA). The sonicated DNA was size selected with KAPA Pure
beads to obtain fragments of about 300bp. Size selected DNA (30 ng)
were used for library preparations with the KAPA Hyper DNA library
kit, according to the manufacturer's instructions. Ten cycles of PCR
were conducted to amplify the libraries. Each library (500 ng) was
pooled for exome capture using the IDT xGen® hybridization capture
protocol according to the manufacturer's instructions. Seven cycles of
PCR were conducted to amplify the library that was analyzed with a
Bioanalyzer 2100 instrument (Agilent, Santa Clara, CA), quantified by
fluorometry on a Qubit instrument (LifeTechnologies, Carlsbad, CA),
and combined in two pools at equimolar ratios. The pools were quan-
tified by qPCR with a Kapa Library Quant kit (Kapa Biosystems-Roche)
and each pool was sequenced on one lane of an Illumina Nova Seq
(Illumina, San Diego, CA) with paired-end 150 bp reads. Raw Illumina
paired-end 151 bp reads were first subjected to quality control.

Adapters were removed from the sequencing reads using scythe
(https://github.com/vsbuffalo/scythe, version 0.994 beta). Base
quality was controlled using a window-based method, sickle (https://
github.com/najoshi/sickle, version 1.33), with the cutoff set at 30.
Reads less than 30 bp in length were discarded. Reads that passed the
quality control were mapped to hg19 reference genome using para-
meter -M for downstream analysis compatibility [38]. PCR duplicates
were removed using Picard-tools (http://broadinstitute.github.io/
picard/, version 2.18.4). Variants were identified using Haplotype-
Caller function in GATK (version 4.0.5.2), followed by variant recali-
bration using the recommendations from GATK developers [39].

Samples UCD006 to UCD009 were processed at Macrogen Inc.
(Seoul, South Korea). Genomic DNA was extracted employing the
standard protocol for Wizard genomic DNA purification kit (Promega,
USA) and was subjected to HiSeq4000 sequencing systems (Illumina,
CA) for whole exome sequencing. The exonic regions were captured and
enriched using SureSelect V5-post capture kit (Agilent Technologies,
SC, CA) and loaded on an Illumina HiSeq4000 sequencer that uses bi-
directional bridge sequencing approach and yields reads with an
average size of 101 bp. The reads were mapped to reference sequence
(GrCh37) by Burrows-Wheeler Aligner (bwa-0.7.10) and the duplicate
molecules were marked and removed by Picard (picard-tools-1.118).
Variant (indels and SNPs) calling and annotation were performed using
GATK (GATK3.v4) and SnpEff (SnpEff_v4.1).

2.8. Validation and performance of genetically variant peptides

Inferred SNP alleles from GVPs were compared to corresponding
genotyping data from sequenced exomes for each individual. Both po-
sitive and negative inferences were demarcated into true and false
positives, and true and false negatives. From these false discovery rates
(FDR=FP/(FP+TP)), positive predictive values (PPV=TP/
(TP+ FP)), sensitivity (sens=TP/(TP+FN)), and accuracy (accuracy
= (TP+TN)/(TP+FP+TN+FN) were calculated [40].

2.9. Estimation of random match probabilities

The cumulative profile of matching inferred SNP alleles was used to
estimate the random match probability (RMP) for that individual [13].
The RMP was calculated using a frequentist estimation of allele dis-
tribution in a reference population [15]. When more then one allele
occurred in an open reading frame the distribution of the allele com-
bination within the open reading frame was counted in the population,
treating each gene as a single locus (Pr(imputed nsSNP allele gene
combination|population)). These were then incorporated in the pro-
duct-rule assuming full independence between open reading frames
[13,15,41]. The occurrence of allele, or allele combinations, was
counted in all of the major population groups in the 1000 Genomes
Project, (European, African, South Asian, East Asian and Indigenous
American; www.1000genomes.org; Phase 3) [37]. The final probability
of an individual SNP, or SNP combination, occurring within a gene
reading frame was estimated as (x + ½)/(n + 1), where x is the
number of individuals with a given SNP, or combination of SNPs, in the
sample population [42]. The above expression represents the Bayesian
posterior mean of a binomial probability using the Jeffreys Beta (½, ½)
prior, which has the advantage of giving a non-zero estimate of the
population probability even for x= 0 [42,43]. Full independence be-
tween loci from different genes was assumed [13]. Two of the inferred
SNP loci (rs7308811, rs7212938), while common (MAF > 0.5%), were
not represented in the 1000 Genomes Project, but the alleles were ob-
served in the Genome Aggregation Databases of exomes (gnomADe)
[44]. In the event that corresponding GVPs from these SNPs were de-
tected in the proteomic dataset the estimated genotype frequency (gfp
= p2 + 2pq) from this reference population was substituted. If other
loci from the same reading frames were inferred, then those values were
used instead. In this scenario no mixing of alleles was used, since the
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observation of allele combinations could not be counted. All ranges are
reported as standard deviations.

3. Results

3.1. The epidermal corneocyte proteome

Epidermal corneocytes were sampled from different body sites using
dermal patches and isolated by the sloughing of squamous cells and
subsequent washing to remove detergent-soluble biological material
[29]. The resulting cellular preparations consisted primarily of the solid
cornified cores of terminally differentiated epidermal corneocytes
[28,29,45]. These remnants were processed by reduction in 50mM
dithioerythritol (DTE) prior to alkylation and trypsinization. A subset of
forearm (A) samples were treated as DTE soluble (AS) and insoluble
(AP) fractions (n=4, Table S1). A total of 40 acquisition and two re-
agent blank runs were conducted on samples from 9 individuals. An
average of 530 ± 440 μg of peptide was obtained across all samples,
well above the amount required (750 ng) for each run. Overall this
resulted in identification of an average of 480 ± 180 proteins, and
22,600 ± 6,400 total peptides, corresponding to 2,800 ± 1,000 dif-
ferent sequences, or 2,300 ± 270 per subject (average ± standard
error of the mean, Fig. 1A) and 3,000 ± 280 per body site (average
± standard error of the mean, Fig. 1B).

Differences in the protein profiles from different body locations
were also observed. Using the Q-Module from PEAKs™, a single re-
plicate dataset of each sample was placed into 3 groups corresponding
to body location, quantified using label free quantitation and clustered
to generate a heat map based on correlated protein abundance patterns
(Figure S1). The ratio of increased quantification relative to the average
dataset, in this case the forehead samples, was calculated based on the
ion signal from the 3 most sensitive peptides. Based on this analysis a
small subset of gene products was relatively over represented in palmar
skin and under represented in other skin types. These high abundance
proteins were keratin type I cytoskeletal 9 (Uniprot# P35527, ratio=
33.71) and hornerin (Uniprot # Q86Y23, ratio= 21.59). Variation was
also observed in mature corneocyte preparations from other body sites.
These were more complex and variable than palmer skin although there
are distinctive abundance patterns specific for arm skin. These were
consistent with abundance patterns observed previously [29,45]. The
three ichthyosis subjects (UCD006 – 008) were removed from the
analysis [30].

3.2. Discovery of candidate genetically variant peptides

Raw datasets were reformatted and applied to X!Tandem using the
Global Proteome Machine [36]. Identified single amino acid variants
(SAVs) were screened and variant peptides with matching common
(> 1% genotype frequency) non-synonymous SNP alleles were identi-
fied and filtered based on the inclusionary and exclusionary char-
acteristics described in the methods. Discovery of genetically variant
peptides using analysis of exome genotypes was also employed on the
South Asian subject cohort. The proteomes of these subjects were
analyzed for gene products in the corneocyte preparations after non-
synonymous SNP alleles in corresponding genes were identified in
exome data that might be represented in the proteomic datasets. The
matching proteomic datasets were then analyzed to confirm the pre-
sence of the candidate GVPs. Non-synonymous SNP loci (rs#) were
identified that were expressed in the genes A2ML1 (rs7308811),
SPRR1B (rs3795382), KRT13 (rs149773722), EPPK1 (rs6558399) and
DSP (rs149773722), which is described in more detail below. In total,
using both discovery approaches, a total of 74 candidate GVPs were
identified, corresponding to 37 non-synonymous SNP loci from 31
genes. Of these, one is not unique (rs2239710_G, KRT34 280 T) and 13
were not observed in the proteomic data, leaving a total of 60 con-
firmed or validated biomarker peptides. GVPs are listed, along with
chemical and genetic characteristics (Table S2). A catalog of potential
epidermal corneocyte GVPs was generated based on a consensus pro-
teome. A skin proteome compiled from 12 subjects was analyzed using
PEAKs™ software version 10.0. Percent coverage was averaged among
these samples. Proteins were excluded from the proteome if they had a
percent coverage lower than 1%. The resulting proteins were used to
search for missense variants using the Ensembl Biomart tool (en-
sembl.org/biomart/martview/). Variants with a global minor allele
frequency lower than 0.005 were excluded. No other filtering was done
on these putative GVPs (Table S3). A total of 1753 non-synonymous
SNPs from 425 genes were identified.

3.3. Validation of epidermal corneocyte genetically variant peptides

Proteomic datasets from epidermal corneocyte preparations were
screened for the presence of candidate GVPs (Fig. 2, PEPTIDE) and the
resulting cumulative profiles used to infer the status of matching non-
synonymous SNP alleles (Fig. 2, GN=Gene Name, rs# = dbSNP ac-
cession number-nucleotide allele). These predictions were cumulated
for each subject (SUBJECTS, 1 to 9) and compared to the genotypes
derived from matching exome datasets (Fig. 2, Table S4). The perfor-
mance of proteomic genotyping for each candidate GVP was evaluated
(true positive, blue; false positive, red; true negative, white; false ne-
gative, green). Of the 264 inferences, 260 were true positives and 4

Fig. 1. The Epidermal Corneocyte Proteome.
Epidermal corneocyte preparations were obtained from each subject (UCD001
to 009). After obtaining and analyzing proteomic datasets using X!Tandem, the
number of unique peptide sequences identified was collated for each subject
(A), or from each body site location B). Mature corneocytes preparations were
obtained from the palmar (P), forehead (FH), leg (L), and arm (A). A subset of
arm preparations was further treated to isolate the protein fraction that was
insoluble (Ap) or soluble (As) in the presence of 50mM dithioerythritol. The
indicated range is the standard deviation.
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Fig. 2. Validation of Genetically Variant Peptides.
Genetically variant peptides (PEPTIDE) were detected in each dataset and cumulatively collated for each subject (SUBJECTS, 1 to 9). Inferred SNP allele genotypes
(GN, gene name; RS#, dbSNP accession number - nucleotide allele) were compared to genotypes derived from matching exomic datasets. True and false positive
predictions are indicated by blue and red squares, and true and false negative predictions indicated by white and green squares respectively. Single amino acid
polymorphisms (SAP) are indicated in red with the variant non-reference allele being in lower case.
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were false positives. There were 173 false negative and 229 true ne-
gative inferences. This results in an overall performance of a 1.5% false
discovery rate (FDR=FP/(FP+TP)), 98.5% positive predictive value
(PPV=TP/(TP+FP)), a sensitivity of 60.0% (TP/(TP+ FN)), and
accuracy of 73.4% ((TP+TN)/(TP+ FP+TN+FN)). At the level of
individual GVPs, 19 peptide-based inferences were 100% accurate. At
the level of individual datasets (n=40) a total of 725 positive pre-
dictions were made with 719 true and 6 false positives, for a false
discovery rate of 0.8 ± 0.2%, overall sensitivity of 37.2 ± 11.6% and
accuracy of 58.8 ± 7.8% (Figure S2). No GVPs appeared in the reagent
blank datasets.

The variation in protein abundance patterns for different skin types
has the potential to affect proteomic genotyping when using palmar
compared to other skin types. We plotted the number of GVPs detected
as a function of unique peptide number detected in each individual
dataset (Figure S3, n=40). Using linear regression (y= ax+ b), and
setting the y-intercept at b=0, the yields of detected GVPs correlate
significantly with the number of unique peptide sequences detected
(y=0.0061x, p=0.02), a co-efficient of one GVP per 160 unique
peptide sequences (www.graphpad.com/quickcalcs). The proteomic
and GVP yields from palmar skin, 13 ± 4.1 GVPs, are 31% lower than
the other skin types combined, 18.9 ± 5.4 GVPs (p= 0.02).

3.4. Statistical estimation of random match probabilities

The utility of corneocyte GVPs to provide forensically usable in-
formation depends on whether random match probabilities (RMPs) are
sufficiently discriminating. As indicated by the dashed black line in
Fig. 3A, the number of detected GVPs in the cumulative pooled datasets
(Fig. 2) ranged from 21 to 34 with an average of 28.8 ± 4.4 across all
subjects. The RMP was calculated for each individual (Fig. 3B). When
using genotype frequencies from the 1000 Genomes Project or Genome

Aggregation Database population consistent with the genetic back-
ground of each subject (solid black lines), estimated RMPs ranged from
1 in 2.8× 104 to 1 in 1.7× 108, with a median value of 1 in 2.4× 106.
European samples averaged a RMP of 1 in 3.7× 107 and South Asian
samples averaged 1 in 1.8× 106. If RMPs were calculated using only
loci represented in the 1000 Genomes Project, the detected number of
GVPs was reduced to an average of 25.7 ± 4.1 and average prob-
abilities were reduced to an average of 1 in 2.8× 107 and 1 in
1.4× 106 in the European and South Asian subjects, respectively.

To determine the effect of reference sample population on RMP
values, probabilities were also calculated using the non-synonymous
SNP, or SNP combination, genotype frequencies from all major popu-
lations in the 1000 Genomes Project [37]. These included European
(EUR, green), African (AFR, red), East Asian (EAS, orange), South Asian
(SAS, purple) and Native American (AMR, blue). As illustrated
(Fig. 3B), the RMPs calculated from African values were considerably
more discriminating, or less conservative, than the other four popula-
tions. The likelihood ratios (LR=Pr(GVP profile|matching popula-
tion)/Pr(GVP profile|African)) ranged from 3.3× 100 to 3.9× 106 and
averaged 4.4× 105 with a median of 3.3× 103. Estimated RMPs using
frequency values obtained from other reference populations overlapped
and were all within an order of magnitude, the maximum difference
was 7.9 fold for UCD008, with a median difference of 2.6 fold across all
subjects. Values generated using the genotype frequencies from the
matching 1000 Genomes project populations (European and South
Asian) resulted in the most conservative estimates for only 2 of the 9
subjects, indicating that more inferred SNP information would be re-
quired to further resolve ancestral contribution from non-African po-
pulations.

3.5. Use of exome-driven GVP-discovery

In this study an alternative approach of GVP discovery was also
used. Exome data from South Asian subjects were reviewed for the
presence of non-synonymous variants in gene products known to be in
given proteomic datasets. These candidate genetically variant markers
were then confirmed by scanning for the presence of corresponding
peptides in proteomic datasets. The advantage of this approach is that
low frequency is no longer an exclusionary criterion. When screening
for candidate GVPs based on proteomic data alone, as conducted above,
rare candidate GVPs are excluded due to the high likelihood of a che-
mical modification accounting for the mass shift as opposed to genetic
polymorphism. Accordingly, a non-synonymous SNP (rs149773722)
was detected in the desmoplakin gene (DSP) corresponding to an amino
acid polymorphism of threonine to serine at position 1806 (T1806S) in
an exome from the subject UCD008. The peptide NQCSQVVQER was
incorporated into the reference protein database and then detected in
the three proteomic datasets from subject UCD008 using both
X!Tandem and PEAKs software (version 8.5) (Fig. 4). The fragmentation
masses corresponding to the serine residue for both the y- (red) and b-
series (blue) are indicated. When the peptide corresponding to the
minor allele of the rare non-synonymous SNP rs149773722 was in-
corporated into the calculation of the RMP of subject UCD008, the
value increased from 1 in 8.5× 105 to 7.4× 108 [42]. The SNP
rs149773722 does not occur in the 1000 Genomes Project (phase 3),
although it does occur at a low rate in the Genome Aggregation Data-
base (4/246032 chromosomes), in the Trans-Omics for Precision Med-
icine (4/125568) and NHLBI exome sequencing project (1/13006)
[44,46]. To be statistically consistent, we used values solely from the
1000 Genomes Project (0/489 subjects) and incorporated Jefferys prior
into all calculations [42]. These result in an estimated genotypic
probability (Pr(rs149773722|South Asian Population)) of 1.15× 10−3.
This is a more conservative value than that obtained using the larger
alternative databases above by orders of magnitude. As a point of in-
terest, the genotype for subject UCD008 was homozygous for this rare
allele, pointing perhaps to a degree of consanguinity in this subject’s

Fig. 3. Statistical Analysis of Proteomically-Inferred Genotypes.
A) Genetically variant peptides were detected and counted cumulatively for
each subject (GVP#). B) Random match probabilities of each subjects profile of
inferred SNP allele genotypes were estimated as described in the Methods using
the genotype frequency values derived from the corresponding major popula-
tion group in the 1000 Genomes Project (black line; Subjects: 1–5, European;
6–9, South Asian). Random match probability values were recalculated using
the genotype frequency values from each of the major population groups in the
1000 Genomes Project (European, EUR green; African, AFR, red: East Asian,
EAS, orange; South Asian, SAS, purple; American, AMR, blue).
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ancestry.

3.6. Analysis of linkage disequilibrium between GVP-Inferred SNPs and
STR loci

Proteomic genotyping results in an inferred genotype of non-sy-
nonymous SNP alleles that was used above to estimate RMP. Because
these SNPs are autosomal this genotype has the potential to also be
incorporated into the product rule with autosomal STR genotypes, re-
sulting in a single estimate of RMP. Combination of these probabilities
into a single value assumes statistical independence between STR and
inferred non-synonymous SNP loci and the absence of linkage dis-
equilibrium effects. Linkage disequilibrium has been measured to decay
by roughly 50% for each 60 kbp in nucleotide distance in European
populations [47,48]. The nucleotide location (GRCh38 build) of each
GVP-inferred SNP and the STR loci from the Illumina ForenSeq™ DNA
Signature Prep Kit were identified and each nucleotide distance mea-
sured (bp) on the same chromosome (Fig. 5) [49]. The closest distance
was 2.2 Mb between rs214814 and D20S482 on chromosome 20, 37-
fold greater than the point of 50% linkage disequilibrium. Ninety per
cent of the measured nucleotides distances were greater than 32 Mb.

4. Discussion

This project describes the discovery, characterization and validation
of 60 genetically variant peptides (GVPs) from the epidermal corneo-
cyte proteome. The study was conducted using 40 proteomic datasets
and 9 exome datasets from 9 subjects of European and South Asian
origin. The genetic peptide biomarkers were primarily discovered using
an analysis of single amino acid variants based on peptide fragmenta-
tion spectra [36]. The identifying potential of these peptides is sig-
nificant, individual random match probabilities (RMPs) range up to
values of over 1 in 100 million. While continental resolution of genetic
background remains problematic, the data do show consistently lower
relative likelihood of African ancestry as a source of proteomic mate-
rial. The identification and use of private GVPs was also explored. These
rare biomarkers are discovered through an analysis of non-synonymous
SNPs in subjects exomes that were predicted to be represented in pro-
teomic datasets and were confirmed by identifying the presence of the
predicted spectra in the respective datasets. The compatibility of the
GVP-inferred genotypes with RMPs derived from STR-based genotypes
was also investigated. The nucleotide distance between GVP-inferred
SNPs and STRs was well beyond the point where linkage disequilibrium
effects would raise statistical dependence beyond background levels.

This project focused on the proteome of fully differentiated squa-
mous epidermal corneocytes [8,27,28] for two reasons. First, this cel-
lular population is easy to isolate and process. Second, continuously
shed from the stratum corneum, these cells are more likely to be as-
sociated with the donor of the fingermark. The population of GVPs
identified from these cells, therefore, is likely to reflect the genotype of
the donor. Other protein populations will be present in fingermarks.
Some of these may provide forensic intelligence or probative context,
such as the presence of blood proteins or bodily fluids, but may not
necessarily originate with the donor [50–52]. The proteome of eccrine
sweat is also more likely to contain endogenous peptide markers
[1,8,53,54].

The study analyzed the corneocyte from four different body regions
only one of which, palmar skin, is responsible for the production of
fingerprints. Palmar skin has a distinctively thicker stratum corneum,
friction ridges, no hair follicles and differences in the distribution and
type of sweat glands [1,5]. These anatomical differences are reflected
by differences at the proteome level (Figure S1), which is distinctive
and dominated by a relative small set of proteins. Other proteins, in-
cluding those containing the GVPs identified in this study, are relatively
under-represented when compared to other corneocyte preparations.
Therefore the yield of GVPs from palmar skin was less than other skin
types (Figure S3). The range of detection covers several orders of
magnitude and even low abundance proteins may provide good quality
unambiguous fragmentation spectra. Nevertheless there is an increased
potential for GVPs to drop below the lower limit of detection when the
gene product is less abundant. Targeted data acquisition of specific
peptides, or more powerful instrumentation, can mitigate this by in-
creasing the sensitivity and quality of peptide and fragmentation data
[55–57]. Fingermark aging is also a factor to consider. A recent study
suggested that a reduction in complexity of the fingermark proteome
might be a means to estimate the time since deposition [12]. One fea-
ture of that particular study was that only low levels of reductant (about
6mM dithiothreitol) were used. This would not solubilize all proteins
given the high levels of disulphide bonds in the cornified envelope [29].
The focus on the less cross-linked, less stable elements of the fingermark
proteome may introduce bias and potentially reduce the apparent half-
life of corneocyte proteins.

The GVPs identified in this study were primarily identified through
empirical detection and screening to eliminate peptides that had mul-
tiple addresses in the genome [13]. The selection of potential GVPs
should be stringent. Poor quality spectra with low expectation scores
(log(e)) were eliminated [13]. Genetically variant peptides that match
the mass shifts present in chemically variant peptides, such as

Fig. 4. Example of a Personal Genetically Variant Peptide Biomarker.
The exome of subject UCD008 was analyzed and a non-synonymous SNP
(rs#149,773,722) that was not represented in the 1000 Genome Project was
detected in the gene product of the desmoplakin gene (GN = DSP). The SNP
changes the codon assignment of the threonine at position 1806 to serine (S).
The polymorphism was incorporated into a reference protein database and the
resulting peptide was detected using PEAKs™ software (version 8.5). All
flanking fragmentation masses for serine (S) in both the b- (b3 and b4, blue) and
y- series (y6 and y7, red) were detected and are indicated.

Fig. 5. Nucleotide Distance between Peptide-Inferred SNPs and STRs.
The nucleotide distance (bp) was measured between all GVP-inferred non-sy-
nonymous SNPs (nsSNPs) and STR loci on the same chromosome (Illumina
ForenSeq™ DNA Signature Prep Kit). The distances for each SNP were ranked
and plotted. Ninety percent of GVP-inferred SNPs were greater than 32 Mb from
the nearest STR with the closest distance occurring at 2.2 Mb.
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methionine oxidation (M to F), deamidation (N/Q to D/E) and variants
with the same mass (Q to K and I to L), would also be poorly predictive
and were also removed from the list of useable biomarkers (Table S2)
[13]. Miss-assignment of a chemical variant peptide as a genetically
variant peptide is common and these incorrect peptide sequences would
still score highly since many of the fragmentation masses are the same.
In this study one GVP pair (KRT78, rs#2,013,325), contained a leucine
to proline polymorphism (Fig. 2 & S2). This has the same mass shift as
proline oxidation, a common post-translational modification in extra-
cellular matrix collagens, but is included since it was predictive in this
study and proline oxidation is not common among keratinized tissue
[58]. As another point of interest, the POF1B gene is located on the X-
chromosome. This points to the theoretical possibility of the genetically
variant peptides associated with the SNP alleles for rs363774 being
used to demonstrate female sex in a fingermark donor. While one of
these alleles was inferred from 6 of the 9 cumulative proteomic data-
sets, only one subject was heterozygote for that locus and no subject
had both corresponding alleles in their cumulative proteomic dataset.
One method to increase the likelihood of identifying an actual geneti-
cally variant peptide is to focus on peptides that have a common
matching SNP allele (MAF > 0.5%) [13]. Generally it is not possible to
quantify the probability of a chemical modification on a peptide, but it
is possible to determine the probability of a genetic variation due to the
inclusion of matching SNP alleles in extant SNP databases. Increased
allele frequency therefore increases the likelihood of correct peptide
sequence assignment.

The estimation of RMP in this study assumes complete correlation of
SNP variants within an open reading frame and complete independence
outside of it [13]. The initial calculations used the genotype frequencies
that were derived from the matching major reference population in the
1000 Genomes Project, the European and South Asian population
groups. When the estimates were recalculated using all of the major
reference populations the estimate of RMP obtained from the African
population were substantially more discriminating, reflecting a deeper
evolutionary history of the African population and increased bio-
distance relative to other population groups [13,37,47,59–61]. While
this shows that an African source for the GVP profiles is less likely,
conclusions about the non-African continental origin of the subjects
proteome could not be made based on the data obtained. The estimates
of RMP based on other continental genotype frequencies resulted in
values that were within an order of magnitude. The discovery and de-
tection of additional GVPs has the potential to resolve the continental
origin of subject’s corneocyte proteomes [14,62,63]. A recent paper
examining GVPs in East Asian hair was able to show that RMPs cal-
culated using East Asian frequencies from the 1000 Genomes Project
were consistently more conservative than those obtained using Eur-
opean or African values, potentially statistically separating two non-
African populations [64]. The use of mass spectrometry techniques such
as parallel reaction monitoring, data independent acquisition, and more
sensitive mass spectrometry instrumentation, will increase the number
of detected GVPs in a fingermark and add data points for RMP calcu-
lations and likelihood values for the differing genetic backgrounds.

Fingermark analysis is often further complicated by the presence of
multiple contributors. Deconvolution of the various contributors, par-
ticularly in conditions of high sample limitation, can be challenging.
Proteomic analysis provides some tools for the forensic investigator in
separating out individual proteomic signals [2,17]. One approach when
using GVPs is the use of rare peptide biomarkers that correspond to
rare, private non-synonymous SNPs. Each individual has a number of
novel non-synonymous SNPs, that are either not represented in ag-
gregation databases or occur very infrequently [16,37]. The detection
of these personal GVPs can resolve the various contributors of a pro-
teomic signal. Identification of these rare variants is problematic
however when depending on fragmentation data alone for identifica-
tion of potential GVPs, because rare candidate peptides are typically
false positive sequence assignments. An exome - dependent analysis of

non-synonymous SNP alleles predicted to be present in proteomic da-
tasets is necessary for identification of rare variant peptides, although it
comes with its own set of assumptions, some of which are not amenable
to standard forensic casework. It assumes prior knowledge of a subject’s
exome and requires a customized investigative workflow [65]. The
private GVP described above from the desmoplakin gene product
(GN=DSP, rs149773722, Fig. 4) is an example of proteomic informa-
tion that can resolve complex contributor patterns by virtue of rarity. In
a mixture only one individual is likely to be a contributor for that
particular peptide or combination of rare GVPs. Care must be taken to
exclude family members who would be likely to share rare alleles. This
type of personalized genetic analysis is, for now, highly expensive,
labor intensive and occurs in an uncertain ethical and legal framework
[66]. These unique markers would be difficult to incorporate into a
rigorous statistical framework, for example they would have high levels
of linkage disequilibrium and standard deviations well in excess of the
estimated genotype frequencies [48,67]. In spite of these factors the use
of complete forensic genomic datasets, including rare variants, are be-
ginning to be incorporated into casework [68].

Perhaps the most significant potential of proteomic genotyping is
the ability to complement and enhance RMPs from incomplete or ab-
sent STR profiles, a common occurrence when relying on touch DNA
[6,18,69]. However, combining the RMPs of SNP genotypes with STR
profiles assumes statistical independence, a criterion that is not met
when genetic loci are close together and are under linkage dis-
equilibrium. Linkage disequilibrium decays as loci become more distant
to each other in nucleotide space [48,67,70]. At 60 kb these effects
average around 50% and decay to background levels around 200 kb
[47,48]. The correlations between separate loci are highly variable
however and should ideally be empirically measured instead of de-
pending solely on assumptions based on nucleotide distance.

A multi-informative approach incorporates all forms of analysis into
the study of a single fingermark [4,11,71]. This allows for the trian-
gulation of physical data, impression patterns of friction ridge skin,
genetic data from nucleotide and now proteomic sources. The con-
tribution of proteomic data to the genetic information extracted from a
fingermark will increase with identification of additional GVPs, and
more sensitive proteomic data acquisition. Additional work is needed to
develop sample workflows that are compatible with DNA-based mod-
alities and recognize the differing chemistries of DNA and protein in the
fingermark [21,22,72,73]. With further development external stable
isotope standard peptide mixtures will be developed and characterized
on a range of mass spectrometry platforms that are available to the
forensic investigator. The GVPs identified, characterized and validated
in this study provide a foundation for additional studies developing this
approach to fingermark analysis. We predict that this additional point
of triangulation will increase the probative and actionable information
that can be derived from fingermark and other trace evidence.
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